1. Universe Sandbox
  2. News

Universe Sandbox News

Universe Sandbox on GeForce NOW



Universe Sandbox is now available to play on GeForce NOW, NVIDIA’s cloud-based game streaming service!

GeForce NOW connects to digital PC game stores like Steam and Epic Games so you can play games you already own in the cloud and stream them to any compatible device in real time.

Bend the laws of gravity, collide planets, boil away oceans, fire epic space lasers, and customize your universe in real time with cloud-based gaming streamed directly to any supported device. And check out our newest update to simulate, construct, and terraform planets and atmospheres more realistically than ever with new materials including oxygen and methane!

If you own Universe Sandbox on Steam, you can play Universe Sandbox on GeForce NOW by

  1. Launching GeForce NOW in your browser or downloading the GeForce NOW application
  2. Creating a free account (free accounts may have multi-hour waits before you are able to play. You can skip the queue with a paid account)
    https://www.nvidia.com/en-us/geforce-now/memberships/
  3. Linking your Steam account
  4. Going to your Games library
  5. Playing Universe Sandbox

Learn more on NVIDIA’s GeForce NOW page.

Any saved simulations and objects you have will be accessible in GeForce NOW, and any saved simulations you create while playing through the service will be available after your session.

If you don't own Universe Sandbox, you can buy it on Steam.

Terraforming | Update 34


Simulate, construct, and terraform planets and atmospheres more realistically than ever before with new materials! Planet sizes, atmospheric heating, gas and liquid colors, and more are now simulated based on the mass and phase of each material in a planet’s composition.

Learn more about how we simulate materials in two new guides
Home > Guides > Tutorials > Playing with Materials Home > Guides > Science > Terraforming Mars

[h4]New Materials[/h4]
Terraform planets, rain down oceans, and expand atmospheres with 8 new materials (for a total of 12) using the Material or Planetscaping tools, or adjust the materials directly under
Properties > Composition
In addition to silicate, iron, hydrogen, and water, we are now simulating helium, carbon dioxide, oxygen, sulfur dioxide, methane, nitrogen, argon, and ammonia.


[h4]Planet Atmospheres[/h4]
Create pleasant Earth-like or oppressive Venus-like atmospheres by adjusting the mix of materials in the atmosphere. Atmosphere colors are based on the amount of gas in a specific area, with thicker atmospheres being harder to see through.


[h4]Material Collisions[/h4]
Bombard planets with materials to see their atmospheres and oceans indefinitely altered. Watch oceans boil, creating vapor-filled atmospheres. Impacts create shockwaves that push gases and punch holes in the atmosphere.


Before

After



[h4]Object Size from Composition[/h4]
We’re using complex models of materials under the intense heat and pressure inside planets to compute realistic planet sizes.


[h4]More Highlights[/h4]
Material colors are based on their real-life properties. Materials blend on the surface of planets and moons so you can watch oceans and gas clouds mix in real time. You can also customize material colors under
View > Advanced View Settings > Materials


Adding materials beyond water allows us to simulate Titan’s methane lakes. In the future, these new materials will also be the foundation for simulating life.


The 4 materials with the most mass will automatically be simulated across an object's surface, indicated by a dot, similar to how water was simulated. You can also override this and choose any 4 materials to simulate across an object’s surface.



We’ve added a collection of material simulations so you can compare how they change phase between solid, liquid, and gas
Home > Open > Materials
The simulation below shows Earth with different materials in each column and a different amount of that material as a liquid in each row. Some evaporate immediately, and some stay liquid under Earth-like conditions.



Easily change the atmospheres of custom planets, old and new, using atmosphere presets of known terrestrial planets. This interface is a work in progress.



Materials masses can be viewed and adjusted by phase (solid, liquid, gas) or collectively at once under an object’s Composition.



More accessible View toggles make it easy to turn on surface lock, illuminate the dark side of planets, or toggle the visibility of atmospheres and clouds.



City Lights and Vegetation now require a habitable gas pressure of 0.6 to 1.6 bars and a new habitable temperature of -25 °C to 55 °C (previously -55 °C to 55 °C) and to appear when set to “If Habitable.”



Use object Markers (formerly called Icons) to clearly see the position and movement of objects and particles in a simulation, like nebula in a galaxy, under
View > Markers


Check out the full list of What's New in Update 34

Please report any issues on our Steam forum, on Discord, or in-game via Home > Send Feedback.

[h4]Known Limitations & Planned Improvements[/h4]
  • Only water vapor and gaseous carbon dioxide contribute to our simple atmospheric heating model. We plan to add heating from methane and other greenhouse gases in the future.
  • Silicate and iron can only exist on the inside of a planet, not on the surface or in the atmosphere.
  • To minimize the impact to performance, only a maximum of 4 materials can be simulated flowing across an object’s surface at a time. We plan to increase the number of materials simulated on object surfaces in the future.
  • When a new material replaces one of the 4 simulated materials, it is evenly distributed over the surface, which can cause an atmosphere to seemingly “pop” into existence.
  • Materials not simulated across the surface of objects do affect their atmospheric heating, but do not affect the atmosphere opacity.
  • Planning updates to the materials interface, including:
    • Viewing materials as a percentage of the mass
    • Updated Phase Diagram interface
    • Updated Atmosphere Preset selection interface
    • Better explanation of the Composition cutaway view
    • Add the ability to easily replace one material with another
  • The maximum speed liquids and gases can flow across object surfaces is slower than the maximum speed of material phase changes and simulation speed.
  • Computing planet radii from their composition does not take into account the object’s surface temperature (so heating a gas giant won’t make it expand, for example).
  • Phase changes (like evaporation) do not affect the surface temperature of an object
  • Materials in small asteroids do not undergo phase changes.
  • Materials transferred during collisions are currently always transferred in the liquid phase (although they can change phase quickly after being transferred).
    The color of Titan’s atmosphere is not fully simulated because they are caused by tiny amounts of organic particles called tholins that are not simulated in Universe Sandbox. We plan to simulate the colors of hazes like those in Titan's atmosphere in the future.

Terraforming Preview | Adding More Materials to Universe Sandbox

The Moon is bombarded with asteroids made of carbon dioxide, sulfur dioxide, methane, and water. These materials are transferred to the Moon's surface, forming lakes that flow together and eventually evaporate to create an atmosphere.

Our new composition system, including eight new materials, like oxygen and methane, is still in active development and has not been released, but you can opt-in to a preview version now on Steam. Every planet in Universe Sandbox is simulated with a combination of materials, like iron and water, that are used to compute properties like planet radius and water flow. However, our current composition system is too simple to simulate phenomena like lakes of liquid methane on Saturn’s moon Titan. Our new system will allow you to realistically simulate planet surfaces and atmospheres, accurately terraform planets, and more.

[h4]Try the Terraforming | Update 34 preview right now![/h4]
Eight new materials and our new composition system are now available for testing and feedback. Learn how to opt-in to a preview version on Steam:
https://universesandbox.com/support/previewversion

[h3]Material Properties in Universe Sandbox[/h3]
The Composition tab shows material properties, including total mass, the percentage and mass in each phase (solid, liquid, and gas), and more. This feature and interface are a work in progress.

[h4]Current Composition System[/h4]
Universe Sandbox’s current composition system uses four materials (iron, silicate, water, and hydrogen) each with a set of physical properties including
  • Density - to compute an object’s mass and radius and determine where materials are within a planet (for example, iron is the densest so it's at the core).
  • Thermal capacity - energy required to increase the material’s temperature by one degree. Used to determine the Surface Heat Capacity of a planet.
  • Molecular weight - average mass of a molecule of the material. Used to create clouds of evaporating gas called volatiles.

Water, the only material currently simulated across an object’s surface, has some additional properties
  • Boiling point - temperature where a material changes from a liquid to a gas
  • Melting point - temperature where a material changes from a solid to a liquid
  • Mass of the material in each phase (solid, liquid, or gas)
  • Liquid and solid density, heat of fusion, and heat of vaporization - to determine how fast water flows, evaporates, and freezes on planet surfaces
  • Realistic (and customizable) colors

[h4]New Composition System[/h4]
Our new composition system has 12 materials: iron, silicate, water, hydrogen, helium, carbon dioxide, oxygen, sulfur dioxide, methane, nitrogen, argon, and ammonia. These are the materials necessary to simulate the most interesting internal, liquid, and atmospheric properties of most objects in our Solar System. Many, like oxygen and carbon dioxide, will also be necessary for life simulation.

Each material has all the properties described above, and they will update in real-time according to the conditions on the planet (though iron and silicate will only exist inside planets and won’t have customizable colors). Want to know the freezing point of carbon dioxide or see how fast it’s evaporating on your custom planet? We’ll simulate it in real time.

[h3]Using New Materials for Simulation[/h3]
Titan with realistic lakes of liquid methane in turquoise at its poles. The Liquid Depth Data View shows the depth and location of the methane lakes.

[h4]Material Phases[/h4]
In our new system, all new materials can exist inside of, on the surface of, or in the atmosphere of a planet. A material’s phase will be simulated based on its temperature and pressure using something called a phase diagram. Our phase diagrams, which show a material’s state at different temperatures and pressures, are based on data taken in labs as well as geological and astrophysical models of planets. Check out the real-life phase diagram of water from Wikipedia as an example, pictured below.

Phase diagram for water shows what phase water has at different temperatures and pressures. The Freezing and Boiling points are the temperatures at which water freezes and boils on Earth, and the triple point shows at what temperature and pressure water can exist as a solid, liquid, and gas at the same time. A supercritical fluid (which we have added to this diagram) has properties of both liquids and gases and is the phase state of atmospheres on gas giant planets. Source: Phase diagram. (2022, September 23). In Wikipedia. https://en.wikipedia.org/wiki/Phase_diagram

We plan to show the phase diagrams we’re using to simulate each material eventually, but right now, they’re primarily for testing. Our phase diagrams have been simplified for performance reasons but still closely reflect the scientific phase diagrams. You can compare our water phase diagram below, which has been edited for clarity, to the real-life phase diagram of water above.

The phase diagram for water to be implemented in Universe Sandbox. This diagram has been simplified compared to the scientific phase diagram for water above for performance. It has also been edited for clarity.

[h4]Planet Interiors[/h4]
The cores of planets are hot and under intense pressure. These extreme conditions affect a material's phase and density and thus the volume the material takes up in a planet’s interior. We’re using realistic models of planet density to compute and dynamically update planet radii from their compositions.

This graph shows the calculated density of Earth based on depth (or radius, 0 km being the core and 6,371 km the surface) in our in-game model (top) compared to a scientific model of Earth’s density (bottom; from A. M. Dziewonski, D. L. Anderson (1981). "Preliminary reference Earth model". Physics of the Earth and Planetary Interiors. 25 (4): 297–356. via Wikipedia). This feature and interface are a work in progress.

The graphs above show Earth’s density based on depth (or radius) in Universe Sandbox (top) compared to a scientifically researched model (bottom). While our in-game model is simplified, both graphs have the same shape and similar densities when compared to the radius. Comparing models allows us to check the integrity of our in-game model.

Our new composition model is more realistic but does not account for the porosity, or amount of tiny holes, of the internal structure of some objects, like the Moon. This means our model simulates some object radii slightly smaller than in real life. To account for this, we’ve added a porosity factor, which is usually an increase of a few percent, to adjust known object radii to match their real values.

The materials on the inside of planets, including iron and silicate (which are only simulated in planet interiors), do not mix together like materials on the surface or in atmospheres. Instead, we simulate planet interiors with layers of individual materials to accurately compute their radii.

The cut-away view of Earth shows the individual materials (upper left), temperature (bottom), and phase (upper right) of each material from the inside out. We can see the model of Earth’s interior in Universe Sandbox has a very hot, solid iron core, a layer of molten liquid iron above it, and a layer of hot, solid silicate that cools as it gets closer to the crust.

[h4]Surfaces[/h4]
Planetscaping materials onto the surface of a blank planet while they flow together. As the simulation speed increases, the liquid methane, nitrogen, and sulfur dioxide start to evaporate, creating opaque atmospheres above their liquid surfaces. Planetscaping materials and the Planetscaping tool interface are works in progress.

Planets can be constructed with any (or all) of the materials available in Universe Sandbox using the Planetscaping tool, Material tool, or an object’s Composition tab. The four materials with the most mass are automatically simulated across an object's surface, similar to how water is simulated now. You’ll also be able to override this and choose which four materials to simulate across an object’s surface regardless of mass.

Surface materials freeze into ices, evaporate to become part of the atmosphere, and melt or condensate to flow together and form oceans. This allows us to realistically simulate phenomena like the lakes of liquid methane on Saturn’s moon Titan and plumes of gas evaporating into the atmosphere during collisions.

Ceres, a dwarf planet in the asteroid belt, collides with Earth. The surface heating on impact causes the ocean to boil, creating an opaque patch of atmosphere above the impact region. The small fragments colliding with Earth push the atmosphere upon entry, creating holes and dense shockwaves that create ripples in the atmosphere.

We plan to increase the number of simulated surface materials in the future, but we’re still determining the best way to do that without decreasing performance. For now, we’ve found that four materials allow for realistic simulation and fun experimentation without significantly affecting performance.

We simulate material colors on the surface and in the atmosphere based on their thickness and scientific measurements of how much light they absorb and emit. The colors of materials in each phase are also customizable across the simulation. For example, liquid water has the same base color on all planets (not including other color changes from the atmosphere or starlight).

Our material color simulation only simulates single material colors and doesn’t include any complex particles that might normally be suspended in them in real life. This means Venus and Titan may not look completely realistic yet because their atmosphere color comes from tiny amounts of complex materials not in Universe Sandbox. We are actively working on the best way to realistically simulate these colors.

[h4]Atmospheres[/h4]
Planetscaping gaseous oxygen into Earth’s atmosphere creates an opaque area that expands outwards. Adding materials to planet atmospheres and the Planetscaping tool interface are works in progress.

Atmosphere color, opacity, amount of atmospheric heating (the greenhouse effect), and amount of Rayleigh scattering (which determines how light scatters in the atmosphere and is what makes Earth’s daytime sky appear blue) on planets is realistically simulated from the mixture of gasses in a planet’s atmosphere.

You can create realistic Earth-like atmospheres for habitable planets and oppressive Venus-like atmospheres just based on their compositions. Currently in Universe Sandbox, this is only possible by manually changing a planet’s Infrared Emissivity, which can increase the amount of heat the atmosphere of a planet retains.

The color and opacity are simulated locally throughout a planet's atmosphere. If you add lots of oxygen in a single region of a planet’s atmosphere, it will get more opaque and change color based on the amount of oxygen in just that area.

[h3]New Minimum Operating System Requirements[/h3]
To add new materials and eventually simulate more than four materials across planet surfaces, we will be dropping support for Windows 7 when this feature is released.

While it is never fun to have support dropped, this will affect just 0.25% of our users and will allow us to leverage newer computational methods to increase the performance of our surface simulation.

We’ll make sure all users who are affected by this change will be able to access the final version of Universe Sandbox with Windows 7 support.

[h3]What’s Still Being Worked On?[/h3]
Many small moons orbit close to Earth, colliding with each other and Earth. Collisions with Earth cause superheated patches of ocean to evaporate and transfer the material from the small moon to Earth.

We’ve been prioritizing designing the properties, data views, and tools for you to easily construct atmospheres, build and terraform planets, and track these materials, but the interface for using them is still a work in progress.

Planets saved in previous versions of Universe Sandbox will only have the previous four materials, which will look and behave differently in our new composition system. Imagine Earth with a pure hydrogen atmosphere - not very realistic. We’re still trying to make this process as smooth as possible, and eventually, you’ll be able to easily update your planet’s atmosphere to be similar to Earth, Venus, Mars, or Titan.

And like any new feature, there may be bugs we have yet to find and fix - and you can help!

[h3]Try the Terraforming | Update 34 preview right now![/h3]
Eight new materials and our new composition system are now available for testing and feedback. Learn how to opt-in to a preview version on Steam:
https://universesandbox.com/support/previewversion

Let us know what you think and show us what you do with these new materials!

Join our community discussions on our Steam Forum and our official Discord community.

Universe Sandbox for Mobile | Update 2 | Challenges of Mobile Development

[previewyoutube][/previewyoutube]
Collisions and surface simulation already run smoothly in Universe Sandbox on mobile devices.

Bringing the complete Universe Sandbox experience to mobile is an exciting and challenging project, and while development was stalled while hiring a new user interface engineer, we are back on track! While we still don’t have a release date for Universe Sandbox on mobile, we want to share our recent progress and current obstacles.

For an overview of our plans for Universe Sandbox on mobile devices, you can read our first Mobile DevLog.

Making our user interface work in portrait mode is an added challenge when adapting it for small screens.

[h3]Pocket-Sized Complexities[/h3]
We’ve been thinking about Universe Sandbox mobile for a long time and have been developing our panels and buttons to be easy to view and use on small screens for years. In fact, Universe Sandbox mobile is built from the exact same code as the version you already know and love, so it will have the same features and user interface as the desktop experience.

This shared codebase means you can enjoy any new features or improvements we add to Universe Sandbox on any device, whether you’re on a desktop, laptop, VR headset, phone, or tablet.

While these are seemingly simple goals, they create complex design challenges, including
  • How to automatically arrange panels and adjust your view so you can focus on controlling the simulation, not having to manage the user interface
  • Switching between multiple panels, like an object's properties, data views, and guide instructions, on small screens in landscape and portrait modes
  • Overhauling our simulation tools (like explode, laser, and planetscaping), to adapt to all screen sizes
Dynamically resizing panels (this tool panel is cut off) and automatically moving the center of your view so you can always see what you're looking at (moving the Sun hidden behind the tool panel to the empty space on the left) is just one example of the user interface work we still need to do. This is a work in progress.

[h3]Under New (Layout) Management[/h3]
While most other simulators and games have a different user interface for their mobile and desktop versions, we want ours to use the exact same interface for all platforms. We think we’re among the first to do this, but if you know of another or have done this with your game, please let us know! You can see what Universe Sandbox mobile might look like right now (including why we haven’t released it yet) by resizing the Universe Sandbox window on your computer to the size of your phone (since our user interface dynamically responds to your window size).

[previewyoutube][/previewyoutube]

[previewyoutube][/previewyoutube]
Showing multiple panels simultaneously in both landscape and portrait orientations while still seeing the simulation on a small screen is one of the biggest challenges of mobile development. This is a work in progress.

While we are still making performance improvements so Universe Sandbox can run smoothly on phones, our primary obstacle in mobile development is ensuring our interface is usable on a small touch screen like a phone. We’ve started tackling it by designing a system to intelligently hide and reveal panels as they open and close, which we’re calling our Dynamic Layout System.

While creating this system will take time, it should allow future improvements and new features to work in Universe Sandbox without any extra development, regardless of whether you’re playing on mobile or desktop. That means we’ll have more time to work on new features instead of spending time implementing the same feature in two different ways.

One new design we have is a step to confirm placing an object, helping it end up where you want it. This is a work in progress.

[h3]Current Progress[/h3]
We’ve been researching the best way to create this dynamic panel management system and have made significant progress implementing it within Universe Sandbox.

There’s still other work to be done, and we do not have a release date or official price for mobile, but we’re still planning on it being a one-time paid app with no ads or in-app purchases.

We have yet to finalize the minimum device requirements for the mobile version, but it will likely require a modern device with decent specs. We will share more about hardware requirements as soon as we finalize them.

Taking a feature-rich, user-interface-heavy desktop game and porting it to mobile presents many challenges, but we are excited to tackle them and create an experience unlike any other at your fingertips.

To receive updates about mobile, like this one, sign up for our mailing list:
http://universesandbox.com/mobile/

[previewyoutube][/previewyoutube]
Earth and Moon collide in Universe Sandbox on a mobile device. While collisions and surface simulations already run smoothly, our guide panels still need to be updated to work with our new Dynamic Layout System.

Join our community discussions on our Steam Forum and our official Discord community.

Gravity Simulation Upgrade | Update 33



[h4]Gravity Simulation[/h4]
We've completely overhauled our gravity simulation to increase accuracy, stability, and overall performance. Run simulations at higher speeds than ever before while maintaining gravitational accuracy.


Many simulations can now be run at noticeably higher simulation speeds. Try increasing the simulation speed of the Solar System simulation or your own custom simulation.


Before

After



The Hubble Space Telescope used to crash into or fly away from Earth at simulation speeds greater than a couple days per second. Now it maintains a stable orbit at much higher simulation speeds.


Before

After



Choreography simulations, where moons are distributed evenly over a pre-computed path creating a unique design, are much more stable and create the desired patterns, like this fish, before becoming gravitationally unstable and falling apart, as expected.


Before

After



We've also added more controls so you can fine-tune the balance between maximum simulation speed and gravitational accuracy. Learn more in our updated guide
Guides > Tutorials > Advanced Simulation Speed Controls

[h4]More Highlights[/h4]
Small objects colliding with gas giants now create more realistic impacts with smaller, gradually growing impact areas


Before

After



Object selection has been completely rewritten. It’s now much easier to select objects in crowded simulations with lots of dust clouds and fragments.


Before

After

Check out the full list of What's New in Update 33

Please report any issues on our Steam forum, on Discord, or in-game via Home > Send Feedback.